[Event at CIG] [CfP] EGML-EC GECCO 2023 workshop on Enhancing Generative Machine Learning with Evolutionary Computation
João Nuno Correia
jncor at dei.uc.pt
Wed Mar 15 10:52:03 CET 2023
Dear Colleague(s),
Below you can find the call for papers for the 2nd Workshop on Enhancing
Generative Machine Learning with Evolutionary Computation.
Feel free to distribute, and thank you for your time.
Best regards,
João Correia
----------------------------------------------------------------------
CALL FOR PAPERS
EGML-EC at GECCO-2023
2nd Workshop on Enhancing Generative Machine Learning with Evolutionary
Computation
https://sites.google.com/view/egml-ec-2023
Genetic and Evolutionary Computation Conference (GECCO'23)
Lisbon, Portugal, July 15 to 19, 2023
Overview and Scope
Generative Machine Learning has become a key field in machine learning and
deep learning. In recent years, this field of research has proposed many
deep generative models (DGMs) that range from a broad family of methods
such as generative adversarial networks (GANs), variational autoencoders
(VAEs), autoregressive (AR) models and stable diffusion models (SD). These
models combine advanced deep neural networks with classical density
estimation (either explicit or implicit) for mainly generating synthetic
data samples. Although these methods have achieved state-of-the-art results
in the generation of synthetic data of different types, such as images,
speech, text, molecules, video, etc., Deep generative models are still
difficult to train.
There are still open problems, such as the vanishing gradient and mode
collapse in DGMs, which limit their performance. Although there are
strategies to minimize the effect of those problems, they remain
fundamentally unsolved. In recent years, evolutionary computation (EC) and
related bio-inspired techniques (e.g. particle swarm optimization) and in
the form of Evolutionary Machine Learning approaches have been successfully
applied to mitigate the problems that arise when training DGMs, leveraging
the quality of the results to impressive levels. Among other approaches,
these new solutions include GAN, VAE, AR, and SD training methods or fine
tuning optimization based on evolutionary and coevolutionary algorithms,
the combination of deep neuroevolution with training approaches, and the
evolutionary exploration of latent space.
This workshop aims to act as a medium for debate, exchange of knowledge and
experience, and encourage collaboration for researchers focused on DGMs and
the EC community. Bringing these two communities together will be essential
for making significant advances in this research area. Thus, this workshop
provides a critical forum for disseminating the experience on the topic of
enhancing generative modelling with EC, presenting new and ongoing research
in the field, and to attract new interest from our community.
Topics of Interest
Particular topics of interest are (not exclusively):
· Evolutionary and co-evolutionary algorithms to train deep generative
models;
· EC-based optimization of hyper-parameters for deep generative models;
· Neuroevolution applied to train deep generative architectures
· Dynamic EC-based evolution of deep generative models training
parameters
· Evolutionary latent space exploration
· Real-world applications of EC-based deep generative models solutions
· Multi-criteria adversarial training of deep generative models
· Evolutionary generative adversarial learning models
· Software libraries and frameworks for deep generative models applying
EC
All accepted papers of this workshop will be included in the Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO'23) Companion
Volume.
Important dates
Submission opening: February 13, 2023
Submission deadline: April 14, 2023
Acceptance notification: May 3, 2023
Camera-ready and registration: May 10, 2023
Workshop date: TBC depending on GECCO program schedule (July 15 or 19, 2023)
There will be NO EXTENSIONS to any of the deadlines
Instructions for Authors
We invite submissions of two types of paper:
· Regular papers (limit 8 pages)
· Short papers (limit 4 pages)
Papers should present original work that meets the high-quality standards
of GECCO. Each paper will be rigorously evaluated in a review process.
Accepted papers appear in the ACM digital library as part of the Companion
Proceedings of GECCO. Each paper accepted needs to have at least one author
registered by the author registration deadline. Papers must be submitted
via the online submission system
https://ssl.linklings.net/conferences/gecco/. Please refer to
https://gecco-2023.sigevo.org/Paper-Submission-Instructions for more
detailed instructions.
As a published ACM author, you and your co-authors are subject to all ACM
Publications Policies (https://www.acm.org/publications/policies/toc),
including ACM's new Publications Policy on Research Involving Human
Participants and Subjects (
https://www.acm.org/publications/policies/research-involving-human-participants-and-subjects
).
Workshop Chairs
· Jamal Toutouh, Univ. of Málaga (ES) - MIT (USA), jamal at lcc.uma.es
· Una-May O’Reilly, MIT (USA), unamay at csail.mit.edu
· João Correia, University of Coimbra (PT), jncor at dei.uc.pt
· Penousal Machado, University of Coimbra (PT), machado at dei.uc.pt
· Sergio Nesmachnow, Univ. de la República (UY), sergion at fing.edu.uy
More information at https://sites.google.com/view/egml-ec-2023
More information about the IFI-CI-Event
mailing list